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During the 3 years of this grant, we have continued our collaboration with Jeffrey Yepez
(AFRL, Hancom Field) and George Vahala (William & Mary) on both quantum and
entropic lattice algorithms for the solution of nonlinear physics problems. Because of the
extreme scalability of the algorithms that we have been developing, we were chosen for
CAP-Phase II for the new IBM-P5+ supercomputer (Babbage) at NAVO MSRC and also
for CAP-Phase II on the 9000 core on the SGI-Altix at ASC.

What is very interesting is the analogy between the detailed balance quantum
lattice algorithms and entropic lattice Boltzmann algorithms.
At each space-time grid point (x,t) in lattice algorithms, the excited state of a qubit Iq)

encodes the probability fq of the existence of a mesoparticle moving with discrete lattice

velocity cq = AXq / At. AXq are the lattice vector links, with q = 1,2, .... Q, where Q is

the number of qubits at each spatial node. The particle momentum is determined from a
suitably chosen qubit-qubit interaction Hamiltonian H' while the spatial location arises
from the free-streaming Hamiltonian -ihicq V. All the particle-particle interactions

q

generated by H' (from 2-body up to Q-body interactions) can be mapped onto a local

collision operator Q q (f, .... fQ) at x. In particular, for type-II quantum algorithms, the

quantum entanglement is localized to those Q-qubits at (x,t) and then this entanglement

is spread throughout the lattice by unitary streaming3'4:

(X,= f(X,t) + (f. Q) , f(x+Axq,t+At)=f'(x,t) (1)

Here f is the incoming probability and f" the outgoing probability. In the classical

limit, there exists a fundamental discrete entropy function 1 2'5
Q

H(fl...fQ) = If ln(fq / Wq) (2)
q=1

where the normalized weights W qw=lI are determined self-consistently. The

collision operator Q q in Eq. (1) is determined so that one remains on a constant entropy

surface

H(f 1'....fQ')=H(f...fQ) (3)

Eqs. (1)-(3) constitute the basics of the detailed-balance lattice algorithms for fluid
turbulence that are ideal for parallel (both classical and quantum) supercomputers.

In the Q-dimensional velocity space, the relaxation distribution function fqq is

determined analytically by extremizing the H-function subject to the local collisional

constraints of conservation of probability and probability flux. fqeq, considered as a

vector, is the bisector of the difference between the incoming and outgoing kinetic
vectors in the inviscid limit lim,__.o a / 2T = 2:



q q _2, 2 =-q _ T1 4

Eliminating q and fq'from Eqs. (4) and (1) one obtains the lattice Boltzmann (LB)

equation

(X+AXq.t+ )= (x,t) + a [fe,,(x,t) ,)], q=1 ....Q (5)

This is basically the entropic LB 1'2 with the BGK collisional relaxation parameters

a(x,t) /2T and feq determined from Eqs. (2) and (3). In the Chapman-Enksog limit,

(Ax -4 0, At -0 0)-- and identifying the density and momentum moments I fq =P
q

.Cqfq p U -- one recovers the quasi-incompressible Navier-Stokes equation with
q

effective viscosity: /(x,t)= I 4Ta -j

molecular viscosity: / O = l(2r - 1) , 'r > 0.5 (6)

To avoid discrete lattice geometry effects polluting the turbulence simulations, one is

restricted to certain Q's on a cubic lattice. In particular it can be shown that on a unit

cubic lattice, the lowest order kinetic velocity models are

Q15: rest velocity, speed 1 (6 velocities), speed f3 (8 velocities) - i.e., Q = 15

Q19: rest velocity, speed 1 (6 velocities), speed N2 (12 velocities) - i.e., Q = 19

Q27: rest velocity, speed 1 (6), speed V (12), and speed 45 (8) - i.e., Q = 27 (7)

Because detailed balance is in-built into the entropic LB algorithm [see Eq. (3)], the

scheme is unconditionally stable for arbitrary large Reynolds numbers, Re = UoL / 2ry0 .

In the CAP-Il runs on 9000 cores on Hawk, we concentrated on the Lattice Boltzman

MHD code. In particular we have been considering the lattice Boltzmann simulation for

the initial profiles of a Taylor-Green velocity profile in an Orszag-Tang magnetic field:

u (x, t = 0) = U0 (sin x cos y cos z , - cos x sin y cos z, 0)

B(x, t = 0) = Bo (-2sin2y+sinz, 2sinx+sinz, sinx+siny)

The isosurfaces of vorticity and current shown in Fig. 1



Fig.]I (a) Isosurfaces of I VorticitylI (b) Isosurfaces of I CurrentlI

With these profiles, there is no initial magnetic helicity or cross helicity

0=f 3d xA(x,0).B(x,0) , 0=f J3XU(X,0).B(X,0)

where A is the vector potential.
An extremely important property of the LB algorithm for MHD is that from the

Chapman-Enksog expansions one can show that the trace of the first order magnetic
stress tensor is proportional the divergence of the magnetic field - and hence this must be
zero since the magnetic stress tensor is antisymmetric:

0 = TrA(I) = je.j [g.j g'q -1BV-B

t3

a,i3

We have verified this result directly from our LB simulo-ions by explicitly calculating the

trace of the magnetic stress tensor, Fig. 2, with TrA(l) =0 to machine accuracy.

M- V B(xj) i1B.

510-

4 10"

0 I=0 2m0 00 d 00 00 70

Fig. 2 The time evolution of TrAO)~ (t) - esea, (g, g,*) in the LB simulation, showing it is 0 to
a,

machine accuracy. Chapman-Enskog asymptotics yields TrAI -(rBV.B / 3.

We present results from two large simulation runs on a spatial lattice of
1800 x 1800 x 1800 using all the 9000 cores available on the SGI Altix. The first run ran
for 60 K time steps with

CASE A: Re=U =1000 , Rm = = 350 , Pr- =0.3
V '1 1)



while the second run ran to 30K time steps at a higher Prandtl and magnetic Reynolds
number

CASE B: Re=UOL=350 , Rm= -BL= 1050 , Pr =-V=3.0
V 11 77

In Fig. 3 we plot the time development of the normalized energies, enstrophies and
palinstrophy

Kinetic Enstrophy Q(t) f d 3X I V XU(X, t)II = (OD2 (Xt))

Magnetic Enstrophy f2m (t) = fd 3X IV xB(x, t)12 = (X(t))

Palinstrophy P(t) = fd 3X IVX(X,t)ll = (IV XG)(X,t)12)

which are just higher order k - moments of the energy spectra.
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(c) normalized palinstrophy
Fig. 3 The time development of the (a) kinetic and magnetic energies, (b) the kinetic and
magnetic enstrophy, and (c) the kinetic palinstrophy - normalized to peak value.

In Navier-Stokes turbulence, the kinetic enstrophy increases sharply at early times due to
inviscid vortex stretching - i.e., the kinetic enstrophy increase is independent of the
transport coefficient. The kinetic energy during this period is very slowly decreasing. In
MHD, however, we see an immediate strong energy exchange from kinetic to magnetic
which is independent of transport coefficients (Case A and B curves overlay in Fig. 4a for
t < 10 K) with a rapid rise in the magnetic enstrophy (i.e., mean square current). For 10K
< t < 20K, there is a flattening in the kinetic energy decay (Fig. 4a) and a subsequent
increase in the kinetic enstrophy (Fig. 4b), somewhat akin to Navier-Stokes turbulence.
The strength of the respective transport coefficient dictates which particular enstrophy
peaks at a greater value (i.e., for Case B the lower resistivity and higher viscosity dictate
that the magnetic enstrophy has a greater increase than in Case A while the kinetic
enstrophy has a lower increase than in Case A). This is also seen in the sharp rise of the
kinetic palinstrophy, Fig. 4c.

The directional energy spectra are shown in Fig. 5 (low magnetic Prandtl number,
Pr = v / q7 = 0.3 ) and Fig.6 (high magnetic Prandtl number, Pr = v / r7= 3.0 ). Initially

these spectra are delta functions. The directional kinetic and magnetic spectra are defined
by

E r,(k , t) = u u(k, k,,,kz't E .,(k.,t) = u(k.,ky,kz ,)12

k,, k, k,, k,

Em(k, t) = , nx(kx,ky,k,t)I EMY(kx,t) = B(k.,ky,kz't)
k,. k: k,, k.

where the summation is always over the wavenumbers ky , kZ: the longitudinal spectra

involve the x-component of the fields while the transverse spectra the y-component of the
fields. In Fig. 4a, we plot the longitudinal [initially a S(k - 2)- spectrum] and the

transverse [initially a two-delta function peak spectrum at k, = 2, 4] directional kinetic
energy at time = 30K, while in Fig. 4b the directional longitudinal magnetic energy
spectrum at t = 10K, 20K, and 30K - and the comparison to the k- 5/3 Kolmogorov
spectrum.



Re=1000, Rm = 350 Re = 1000. Rm = 350
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Fig. 4 The time development of the directional energy spectra for the low magnetic Prandtl

number case: Pr = v / 17 = 0.3 (a) the longitudinal and transverse kinetic energy spectrum at t =

30K, and (b) the longitudinal magnetic energy spectrum at t = 1OK, 20K and 30K. Also plotted is

the Kolmogorov k/53 inertial range spectrum.
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Fig. 5 The time development of the directional energy spectra for the high magnetic Prandl

number case: Pr = v / r7= 3.0 (a) the longitudinal and transverse kinetic energy spectrum at t =

4K and t = 16K, and (b) the longitudinal and transverse magnetic kinetic energy spectrum at t =

4K and t = 16K. Also plotted is the Kolmogorov k 513 inertial range spectrum.

As we increase the magnetic Prandtl number to Case B one finds a substantial difference

between the longitudinal and transverse spectra, Fig. 5. The transverse kinetic and

magnetic energy spectra show much stronger excitation of high k. -modes, which in the

magnetic energy case shows a quite strong semblance to the Kolmogorov inertial energy



k-5/3 - spectrum at t = 16K (Fig. 5b). There is also an interesting enhancement of the

transverse kinetic energy spectrum for 40 < k, < 200 at t = 16K (Fig. 5a).

This behavior maybe attributed to the strong but localizd vorticity and current
sheets developing due to the turbulence. In Fig. 6 we plot some time snapshots of the
isosurfaces of vorticity and current for this high magnetic Prandtl number case.

vorticity isosurface vorticity isosurface

current isosurface current isosurface

(a) t = 4K (b) t = 8K



vorticity isosurface vorticity isosurface

current isosurface current isosurface

(c) t = 12K (d) t = 16K



vorticity isosurface vorticity isosurface

current isosurface current isosurface

(e) t=20K 0 t=24K

Fig. 6 The time development of the vorticty, IC01, and corresponding current IJI. isosurface for

the high magnetic Prandtl number simulation. (a) t = 4K, (b) t = 8K, (c) t = 12K, (d) t = 16K, (e)

t = 20K, (/) t = 24K. The isosurface value chosen is that corresponding to the average I"I and

average IJIfor that time instant. The color coding is dependent on the value of 6-o) and BJ at

the isosurface gridpoint, going from RED for parallel unit vectors u 11 CO to BLUE for

antiparallel unit vectors fiCOi= -1. Similarly for the current isosurfaces: from RED for

fi-J = +1 to BLUEfor BJ = -1. The GREYscale is for isosurfaces with ilo6) = 0 = BoJ

There is much information in Fig. 6 : the intensification of localized horizontal current
sheets (see Fig. 6a-Fig.6c, midway at the vertical cube edges), the development of intense
vertical localized patches of vorticity and current at later times with similar isosurface



geometrical structures of vorticity and current. It is also very apparent that large scale
magnetic (and hence velocity) structures persist for long times, Fig.6f. This is also seen
in the low magnetic Prandtl number simulation, Fig. 7, where some large scale vorticity
and current isosurface structures persist, even at t = 50K. This is very unlike 3D Navier-
Stokes turbulence which is dominated by small scale vortex structures as seen in Fig. 8

(a) (b)
Fig. 7 The (a) vorticity and (b) current isosurfaces at t = 50K for the low Prandtl number

(Pr = v /q = 0.3) simulation. Some large scale magnetic structures persist, along with

corresponding large scale vortex structures.

Fig, 8 The vorticity isosurfaces in 3D Navier-Stokes turbulence. The flow is dominated by very

small scale structures after the inviscid vortex stretching and the peak in the fluid enstrophy.

This isosurface is at t = 7K of an ELB simulation

Finally, we present some correlation data for the magnetic field

C(,ng(r) = (B.(x,y,z) B.(x + r,y,z))



CY,s(r) = (B,(x,y,z) By(x + r,y,z)) , (r)= (B(x,y,z) B.(x + r,y,z))

Magnetic Correlations at t = 12 K Magnetic Correlations at t = 24 K
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Fig. 14 Magnetic Correlations at (a) t = 12K, (b) t = 24K for the high magnetic Prandil
number simulation, Case B. The very slight increase in the longitudinal correlation function for r
> 650 at t = 12K is no longer present at t = 24K.

It is seen that as time develops, the almost constant asymptotic tail of the longitudinal

magnetic correlation function disappears, and by t = 28K C,o,g' (r)< 0 for all r.

Moreover, we find (for r > 0)

C,Y(r) , Cz ,(r) < C,,,g (r) , for all times

with C,,,,g' (r) < 0, are consistent with the correlation statistics of a random solenoidal

vector field.

Concluding Remarks
We have developed a 3D LB-MHD algorithm that is ideally parallelized and

presented some simulation results on a 1800 3-spatial grid that shows the persistence of
large scale magnetic and vorticity structures for long times. Morever, the time
development of the correlation statistics of the magnetic field indicate that the B-field is
becoming more and more random. An important feature of the LB-MHD approach is
that the algorithm automatically ensures V.B = 0 to machine accuracy.

The straightforward LB algorithm, while simple and explicit, suffers from
numerical instabilities as Re - - , Rm - -o. This places upper bounds on the

attainable transport coefficients. At the Navier-Stokes level, entropic algorithms have
been developed that remain unconditionally stable for arbitrary small viscosities.
Indeed, we have presented here the first large scale ELB simulations on a 1600 3-grid at
Re = 25000. While our ELB code runs successfully for much higher Reynolds numbers,
the turbulence is no longer fully resolved on these 'small' grids, and so these results are
not presented here. We are currently developing entropic LB-MHD algorithms that
would permit simulations at arbitrary small transport coefficients.



While the simulations reported here are on a simple 3D periodic domain, LB
algorithms can handle arbitrary geometries without loosing their intrinsic parallelization.
Nonuniform spatial grids can be readily handled. In these cases, the spatial grid and the
kinetic velocity lattice will now no longer overlay. As a result, the streaming step of the
LB algorithm will no longer give immediate data at the spatial nodes. One would then
resort to interpolation methods to get the streamed information onto the spatial nodes.
Moreover all the latest CFD methods for handling arbitrary spatial grid geometries can be
immediately brought over to LB. It remains to be seen what price will need to be paid on
the parallelization of such augmented LB codes.

Finally, we comment on another interesting aspect of ELB algorithms. The ELB-
viscosity Veff (x,t) gives the appearance of an eddy viscosity and immediately raises the

question of whether there is any connection between ELB and the Large Eddy
Simulations (LES) in turbulence modeling. The simplest LES model is the Smagorinsky
model in which the subgrid scales are modeled by an eddy viscosity that is related to the
mean rate of strain velocity tensor:

Vsng(,t) = (CA) S

where the rate of strain tensor (of the resolvable scales)
SY=I( aU i +U au

s=2 axi a+
A is the filter width (defined in the filtering function that separates the resolvable from
the subgrid scales) and Cs is some empirical constant. Obviously, the connection (if
any) between the ELB and LES transport coefficients is not obvious: ELB deals with
entropy surfaces and the determination of the collision parameter y(x,t) that enforces

detailed balance on the pre- and post-collision distribution functions, while LES deals
with the rate of strain tensor. It is of much interest that one can immediately construct
local LB-LES models that recover the Smagorinsky-CFD LES model. This is because
the local strain tensor can be recovered from the second moment of the non-equilibrium
distribution function

l(u +.. a uy I.=_ 3 'ei [/t_ q]

S a a

Of course, this is exactly how V.B is recovered from the trace of thefirst moment of the
nonequilibrium magnetic distribution function and by making this first moment

antisymmetric we enforce V.B = 0 to better than O(0-15). This also opens up the

possibility of examining LES LB-MHD algorithms being developed for CFD techniques
by Carati et. al., where the LB version will be, unlike the CFD code, ideally parallelized.
These LES LB-MHD codes are currently being developed.
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